

1	Biogeochemical and plant trait mechanisms drive enhanced methane emissions
2	in response to whole-ecosystem warming
3	
4	Genevieve L. Noyce and J. Patrick Megonigal
5	Smithsonian Environmental Research Center, Edgewater, MD
6	
7	Corresponding author: G. Noyce, noyceg@si.edu, 443-482-2351
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	1
	1

Abstract

Climate warming perturbs ecosystem carbon (C) cycling, causing both positive and negative feedbacks on greenhouse gas emissions. In 2016, we began a tidal marsh field experiment in two vegetation communities to investigate the mechanisms by which whole-ecosystem warming alters C gain, via plant-driven sequestration in soils, and C loss, primarily via methane (CH₄) emissions. Here, we report the results from the first four years. As expected, warming of 5.1 °C more than doubled CH₄ emissions in both plant communities. We propose this was caused by a combination of four mechanisms: (i) a decrease in the proportion of CH₄ consumed by CH₄ oxidation, (ii) more C substrates available for methanogenesis, (iii) reduced competition between methanogens and sulfate reducing bacteria, and (iv) indirect effects of plant traits. Plots dominated by *Spartina patens* consistently emitted more CH₄ than plots dominated by *Schoenoplectus americanus*, indicating key differences in the roles these common wetland plants play in affecting anerobic soil biogeochemistry and suggesting that plant composition can modulate coastal wetland responses to climate change.

1. Introduction

Methane (CH₄) is a potent greenhouse gas that contributes to 15-19 % of total greenhouse gas radiative forcing (IPCC, 2013) and has a sustained-flux global warming potential that is 45 times that of CO₂ on a 100-year timescale (Neubauer & Megonigal, 2015). Wetlands are the largest natural source of CH₄ to the atmosphere and were recently identified as the largest source of uncertainty in the global CH₄ budget (Saunois et al., 2016). Recent estimates calculate that CH₄ emissions from vegetated coastal wetlands offset 3.6 of the 12.2 million metric tons (MMT) of CO₂ equivalents accumulated by these ecosystems each year (EPA, 2017). Despite this, there is still a substantial knowledge gap regarding how global change factors, such as climate warming, will alter coastal wetland CH₄ emissions (Mcleod et al., 2011) even though these feedbacks have the potential to shift coastal wetlands from being a net sink of C to a net source (Al-Haj & Fulweiler, 2020; Bridgham et al., 2006).

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

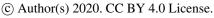
71

72

73

74

75


76

77

The net flux of CH₄ to the atmosphere from any ecosystem represents the balance between the amount of CH₄ produced (methanogenesis), the amount of CH₄ oxidized (methanotrophy), and the rate of CH₄ transport from the soil. Rates of methanogenesis are driven by low redox conditions and substrate availability, while aerobic CH₄ oxidation requires both O₂ and CH₄ as substrates. Roots and rhizomes in wetland ecosystems influence methane-related substrates through at least two mechanisms: (i) deposition of organic compounds that support multiple pathways of heterotrophic microbial respiration, including methanogenesis, and (ii) release of O₂ that simultaneously promotes CH₄ oxidation (Philippot et al., 2009; Stanley & Ward, 2010) and regeneration of competing electron acceptors such as Fe(III) and SO₄. Root exudates, which typically include low molecular weight compounds, may either be more readily used by microbes than existing soil C (Kayranli et al., 2010; Megonigal et al., 1999) or may prime microbial use of soil C (Basiliko et al., 2012; Philippot et al., 2009; Robroek et al., 2016; Waldo et al., 2019). Root exudates can also decrease CH₄ oxidation by stimulating use of O₂ by other aerobic microbes (Lenzewski et al., 2018; Mueller et al., 2016). Consequently, wetland CH₄ emissions are strongly linked to a wide variety of plant traits that govern the supply of reductive (organic carbon) and oxidative (O₂) substrates to soils (Moor et al., 2017; Mueller et al., in press). Although it is understood that wetland plants are a primary control on CH₄ emissions and that much of their influence is mediated through conditions in the rhizosphere (Waldo et al., 2019), there are surprisingly few data, especially from coastal wetlands, that couple plant responses to the dynamics of electron donors (organic C), electron acceptors (O2, SO4), and the rates of competing (sulfate reduction vs methanogenesis) or opposing (CH₄ production vs CH₄ oxidation) microbial processes. The general lack of process data on wetland CH₄ cycling makes it difficult to forecast ecosystem responses to climate change. For example, the well-documented observation that warming increases wetland methane emissions can be either amplified or dampened depending on changes in plant activity (e.g. primary production) or plant traits (e.g. community composition) (Mueller et al., in press). Vegetation composition has been shown to be a stronger control on CH₄ emissions than ~1 °C of warming in northern peatlands (Ward et al., 2013) and Chen et al. (2017) proposed that warming effects on plant functional types can drive C flux responses 3

that cannot otherwise be explained by abiotic conditions. In freshwater marshes, plant species and growth

78

79 trends have also been linked to seasonal shifts in pools of dissolved CH₄ and DIC (Ding et al., 2005; Stanley & Ward, 2010) and methanogenesis dynamics (Sorrell et al., 1997). 80 81 Tidal wetlands are particularly good model systems for determining the mechanisms by which 82 warming alters CH₄ emissions. Not only will the CH₄ cycle respond to the direct effects of warming, but 83 the temperature effects on the outcome of competition for electron acceptors is relatively easily observed 84 because of the abundance of SO₄. Thermodynamic theory in which terminal electron acceptors (TEAs) 85 are used in order of decreasing thermodynamic yield is commonly interpreted to mean that a system will 86 support only one form of anaerobic respiration at time, with methanogenesis occurring only when pools 87 of more energetically favorable TEAs have been depleted. However, in real systems with spatial and 88 temporal variability in the supply of electron donor substrates and TEAs, all forms of anaerobic 89 metabolism occur simultaneously (Megonigal et al. 2004, Bridgham et al., 2013). Much of this spatial and 90 temporal variation arises from the distribution and activity of roots and rhizomes as mediated by the 91 rhizosphere (Neubauer et al., 2008). Global change factors such as warming will further affect the spatial 92 distribution of key metabolic substrates. In addition, the relatively limited species diversity in saline tidal 93 wetlands allows species-level effects on CH₄ cycling to be delineated more easily than in diverse 94 freshwater wetlands. 95 Methane flux measurements are a metric of broader shifts in redox potential and biogeochemical 96 cycling, as they are sensitive to virtually all processes that regulate availability of electron donors and 97 electron acceptors. Emissions are commonly predicted to increase with future climate warming, including 98 from coastal wetlands (Al-Haj & Fulweiler, 2020), but there is minimal prior understanding of the 99 underlying mechanisms, which was the focus of this study. Our objectives were to explore the 100 mechanisms that drive enhanced CH₄ emissions under warming. To accomplish this, we measured 101 monthly CH₄ emissions from 2016 through 2019 and coupled these flux measurements with analysis of 102 porewater biogeochemistry and vegetation biomass and composition.

2. Materials and Methods

2.1 Site Description and Experimental Design

The Salt Marsh Accretion Response to Temperature eXperiment (SMARTX) was established in the Smithsonian's Global Change Research Wetland (GCReW) in 2016. GCReW is part of Kirkpatrick Marsh, a microtidal, brackish high marsh on the western shore of the Chesapeake Bay, USA (38°53' N, 76°33' W). Soils are organic (>80 % organic matter) to a depth of 5 m, which is typical of high marshes in the Chesapeake Bay. The marsh is typically saturated to within 5-15 cm of the soil surface, but inundation frequency varies across the site, from 10-20 % of high tides in high elevation areas to 30-60 % of tides in low elevation areas.

SMARTX consists of six replicate transects, three located in each of the two dominant annual plant communities (Fig. S1). In the C3-dominated community (herein the 'C3 community') the C3 sedge Schoenoplectus americanus (herein Schoenoplectus) composes more than 90 % of the aboveground biomass (Table 1). In the C4-dominated community (herein the 'C4 community'), 75 % of the aboveground biomass was initially composed of two C4 grasses (Spartina patens and Distichlis spicata, herein Spartina and Distichlis, respectively). However, by 2019, Spartina and Distichlis declined to 56 % of the aboveground biomass (Table 1).

Table 1. Relative contribution to total aboveground biomass from C_3 sedges (*Schoenoplectus americanus*) and C_4 grasses (*Spartina patens* and *Distichlis spicata*) in each plant community. Values are means and SE (n = 12).

	C ₃ community		C ₄ com	munity
Year	% C ₃	% C ₄	% C ₃	% C ₄
2016	93 (3)	8 (3)	8 (2)	76 (6)
2017	91 (3)	9 (3)	10(3)	64 (4)
2018	95 (1)	5 (1)	15 (4)	65 (7)
2019	93 (2)	4(1)	23 (5)	56 (6)

Each transect is an active warming gradient consisting of unheated ambient plots and plots that are heated to 1.7 °C, 3.4 °C, and 5.1 °C above ambient. All plots are 2 x 2 meters with a 20 cm-wide buffer around the perimeter. Aboveground plant-surface temperature is elevated via infrared heaters and soil temperature is elevated via vertical resistance cables (Rich et al., 2015). Soils are heated to a depth of 1.5 m, which is the depth most vulnerable to climate or human disturbance (Pendleton et al., 2012).

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

Aboveground and belowground temperature variation are assessed via thermocouples embedded in acrylic plates at plant canopy level and inserted into the soil, respectively, and the temperature gradient is maintained by integrated microprocessor-based feedback control (Rich et al., 2015). Noyce et al. (2019) provides additional details of the heating system. Warming began on 1 Jun 2016 and has continued year-round.

2.2 Methane flux measurements

Methane emissions were measured monthly year-round from May 2016 to Dec 2019 using a static chamber system. One permanent 160 cm² aluminum base was inserted 10 cm into the soil in each plot in Apr 2016. On each measurement date, clear chambers (40 x 40 x 40 cm) were gently placed on top of each base and secured with compression clips. Chambers consisted of an aluminum frame with transparent sides made of polychlorotrifluoroethylene film (Honeywell International) and closed-cell foam on the base. Depending on the height of the vegetation at the time of measurement, chambers were stacked up to four high (total height of 40 to 160 cm) (Fig. S2). The advantage of this stacking method is that it uses the minimal chamber volume necessary, while also allowing for plant growth. After placement, the chambers were left open for at least 10 minutes, to minimize disturbance effects and allow air inside the chamber to return to ambient conditions. During data collection, chambers were covered with a transparent polycarbonate top equipped with sampling tubes, a fan to circulate air inside the chambers, a PAR sensor, and thermocouples. The sealed chamber was covered with a foil shroud to block out all light and to minimize changes in temperature and relative humidity during the measurement period. An UltraPortable Greenhouse Gas Analyzer (Los Gatos Research, CA) was used to measure headspace CH₄ concentrations for 5 min. Plots were accessed from permanent boardwalks elevated 15 cm above the soil surface to avoid compressing the surrounding peat and altering CH₄ emissions. Fluxes were calculated as the slope of the linear regression of CH₄ concentration over time. The 40 fluxes where p >0.05 were assigned a value of ½ the limit of detection of the system (Wassmann et al., 2018; Table S1). This was 1 % of fluxes during the growing season and 4.5 % of fluxes over the remaining months. For 2017-2019, monthly measurements were scaled to annual estimates by regressing CH₄ emissions against

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

daily mean soil temperature and day of year (as a proxy for phenological status). Annual estimates were not calculated for 2016 because flux measurements did not start until May.

2.3 Porewater sampling and analysis

Porewater samples were collected in May, Jul, and Sep of each year using stainless steel 'sippers' permanently installed in each plot. Each sipper consisted of a length of stainless-steel tubing, crimped and sealed at the end, with several slits (approximate width 0.8 mm) cut in the bottom 2 cm. The aboveground portion of each sipper was connected to Tygon Masterflex® tubing capped with a 2-way stopcock. In May 2016, duplicate clusters of sippers were installed in each of the 30 plots at 20, 40, 80, and 120 cm below the soil surface. An additional set of 10 cm-deep sippers was installed in 2017. In this study we defined samples from 10-20 cm as "rooting zone" samples and samples from 40-120 cm as "deep peat" samples. On sampling dates, porewater sitting in the sippers was drawn up and discarded, after which 60 mL of porewater from each depth (30 mL from each sipper) was withdrawn and stored in syringes equipped with 3-way stopcocks. A 10 mL-aliquot of each sample was filtered through a pre-leached 0.45 µm syringe-mounted filter, preserved with 5 % zinc acetate and sodium hydroxide, and frozen for future SO₄ and Cl analysis. Dissolved CH₄ was extracted from 15 mL of porewater in the syringe by drawing 15 mL of ambient air and shaking vigorously for 2 min to allow the dissolved CH₄ to equilibrate with the headspace. Headspace subsamples were then immediately analyzed on a Shimadzu GC-14A gas chromatograph equipped with a flame ionization detector. The remaining porewater was used to measure pH, H₂S, and NH₄; those data are not reported here. SO₄ and Cl were measured on a Dionex ICS-2000 ion chromatography system (2016-2018) or a Dionex Integrion (2019). On the Dionex ICS-2000 samples were separated using an AA11 column with 30 mM of KOH as eluent; on the Dionex Integrion samples were separated using an AA11-4µm-fast column with 35 mM KOH. Sulfate depletion (Sulfate_{Dep}) was calculated based on measured porewater concentrations of SO_4 (SO_{4pw}) and Cl (Cl_{pw}) and the constant molar ratio of Cl to SO_4 in surface seawater $(R_{sw} = 19.33; Bianchi 2006)$ using the following equation: Sulfate_{Dep} = Cl_{pw}/R_{sw} - SO_{4pw} . Based only on

seawater inputs, the ratio of Cl to SO₄ would remain constant, but under anaerobic conditions SO₄ can be

reduced by sulfate reducing bacteria, altering this ratio. As a result, SO₄ depletion can be used as a proxy for SO₄ reduction rates.

2.4 Plant biomass measurements

Measurements of *Schoenoplectus*, *Spartina*, and *Distichlis* biomass were conducted during peak biomass of each year (29 Jul – 2 Aug) as described by Noyce et al. (2019). *Schoenoplectus* biomass was estimated using non-destructive allometric techniques (Lu et al., 2016) in 900-cm² quadrats, and *Spartina* and *Distichlis* biomass were estimated through destructive harvest of 25-cm² subplots.

2.5 Data analysis

Statistics were conducted in R (version 3.6.3). ANOVA tests were used to compared means between warming treatments and plant communities, with Tukey's HSD test for *post hoc* analyses. The 'growing season' was defined as May through Sep, based on *Schoenoplectus* growth trends (see Fig. S3). Due to the non-normal distribution of the CH₄ flux (Fig. S4) and porewater data, values were log transformed prior to calculating analyses.

3. Results

3.1 Environmental conditions and experiment performance

The growing season of 2016 was the hottest of the four years, with growing season temperatures averaging >1 °C above the other three years (Table 2). While 2017 through 2019 had similar summer temperatures, they had very different precipitation regimes; 2018 was much wetter on average and 2019 was slightly drier (Table 2). During all years, temperatures in the experimental plots were successfully shifted by the target differentials of +1.7, +3.4, and +5.1 °C above the ambient plots (Fig. 1; Noyce et al., 2019).

Table 2. Growing season (May-Sep) temperature and precipitation. Temperature data are means (SE) of daily averages from ambient plots and precipitation is total from May through September.

Year	Mean aboveground	Mean soil	Total
1 641	temperature (°C)	temperature (°C)	precipitation (cm)
2016	24.7 (0.3)	22.4 (0.2)	51.0
2017	22.0 (0.3)	20.7 (0.2)	51.1
2018	23.7 (0.3)	20.8 (0.2)	86.4
2019	23.6 (0.3)	20.9 (0.2)	43.7

200

201

202

203

204

205

3.2 Methane fluxes

Methane emissions increased with soil temperature ($R^2 = 0.41$, p < 0.001) (Fig. 1). Emissions from all treatments had strong seasonal trends; fluxes were highest in the C_3 community in Jun through Aug and peak fluxes in the C_4 community were shifted about a month later to Jul through Sep (Fig. S4). Whole-ecosystem warming increased CH_4 emissions throughout the growing season ($F_{3,439} = 3.7$, p = 0.012; Fig. 2). Across all four years, 5.1 °C of warming more than doubled growing season emissions, from 624 to 1413 μ mol CH_4 m⁻² d ($p_{adj} = 0.01$; Fig. 2).

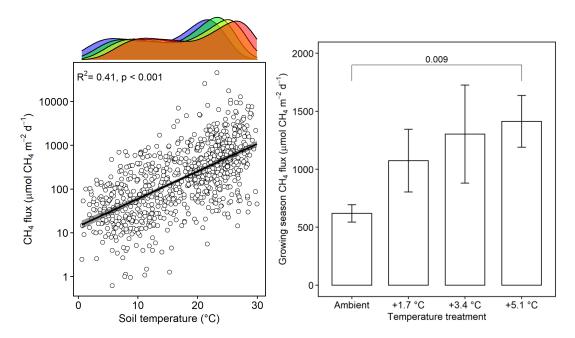


Figure 1. CH_4 emissions from each plot versus the soil temperature at the time of measurement. Density plot shows the range of soil temperatures in each treatment.

Figure 2. Comparison of CH_4 emissions from each warming treatment during the growing season (May-Sep). Means include both the C_3 and C_4 community and all years of measurement. Error bars indicate SE. Horizonal bars indicate means that are significantly different and the corresponding p_{adj} .

Mean CH_4 emissions were higher from the C_4 community than from the C_3 community both during the growing season ($F_{1,70} = 22.0 \ p < 0.001$; Fig. 3a) and on an annual basis ($F_{1,70} = 10.2, p = 0.002$; Fig. 3b). Mean annual CH_4 emissions ranged from 58 mmol CH_4 m⁻² yr⁻¹ (ambient) to 343 mmol CH_4 m⁻² yr⁻¹ (+5.1 °C) in the C_3 community and from 55 mmol CH_4 m⁻² yr⁻¹ (ambient) to 879 mmol CH_4 m⁻² yr⁻¹ (+5.1

206

207

208

209

°C) in the C₄ community (Table S2). Under ambient conditions, growing season CH₄ fluxes were almost twice as large from C₄ plots, whereas under low warming (1.7-3.4 °C) this difference increased to more than three times as large (Fig. 3a). From 2017-2019, CH₄ emissions were positively related to *Spartina* and *Distichlis* aboveground biomass across all warming treatments and negatively related to *Schoenoplectus* biomass (Fig. 4a,b). In 2016, however, the direction of those relationships in both plant communities were the exact opposite, with *Spartina* and *Distichlis* biomass negatively related, and *Schoenoplectus* biomass positively related, to CH₄ emissions (Fig. 4a,b).

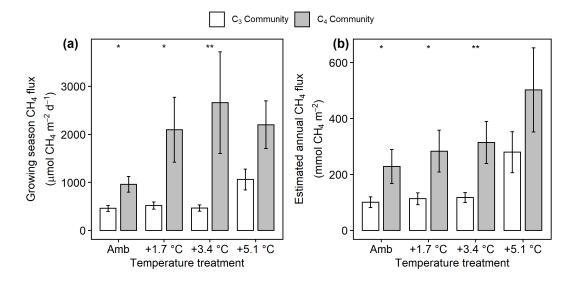


Figure 3. Comparison of CH₄ emissions from the C₃ community dominated by *Schoenoplectus* (open bars) and the C₄ community dominated by *Spartina* and *Distichlis* (grey bars). (a) During the growing season (May-Sep) and (b) scaled to a year. Means are averaged across all sampling dates for 2017 – 2019. Error bars indicate SE. Asterisks indicate significant differences between C₃ and C₄ means at a given temperature (* p_{adj} <0.05, *** p_{adj} <0.01).



Figure 4. Mean growing season (May-Sep) CH₄ emissions from each plot versus the biomass of (a) C_3 (*Schoenoplectus*) and (b) C_4 (*Spartina* and *Distichlis*) plants. All regressions are significant at p = 0.05.

3.3 Porewater chemistry

Under ambient conditions, porewater collected from the C_4 community had lower salinity ($F_{1,315}$ = 15.5, p < 0.001), more dissolved CH₄ ($F_{1,315}$ = 45.0, p < 0.001; Fig. 5a,b), and less SO₄ ($F_{1,315}$ = 61.5, p < 0.001; Fig 6a) than the C_3 community. In the C_3 community, warming increased dissolved CH₄ in both the rooting zone porewater (i.e. 10-20 cm) ($F_{3,225}$ = 5.45, p = 0.001; Fig. 5a) and in the deep peat (40-120 cm) ($F_{3,368}$ = 13.6, p < 0.001; Fig. 5b). Dissolved CH₄ concentrations were relatively similar in the ambient, +1.7 °C, and +3.4 °C treatments, but more than doubled with +5.1 °C of warming in both the rooting zone (59 to 125 μ mol CH₄ L⁻¹, p_{adj} = 0.001) and the deeper porewater (43 to 1254 μ mol CH₄ L⁻¹, p_{adj} < 0.001). In the C_4 community there was minimal effect of warming treatment on porewater in the rooting zone ($F_{3,230}$ = 5.45, p = 0.67; Fig. 5a), but all levels of warming decreased dissolved CH₄ below 40 cm ($F_{3,379}$ = 39.3, p < 0.001), with concentrations in the +3.4 and +5.1 plots less than a third of the concentrations in the ambient plots (155 vs 56 and 40 μ mol CH₄ L⁻¹, p_{adj} < 0.001; Fig. 5b).

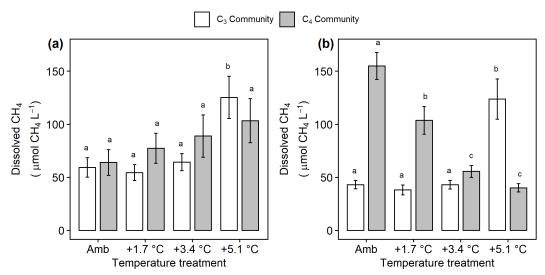


Figure 5. Comparison of dissolved CH₄ from the C_3 community dominated by *Schoenoplectus* (open bars) and the C_4 community dominated by *Spartina* and *Distichlis* (grey bars). (a) In the dominant rooting zone (10-20 cm) and (b) below the rooting zone (40-120 cm). Means are averaged across all sampling dates for 2016 – 2019. Error bars indicate SE. Letters indicate temperature treatments that are significant different from each other (p_{adj} <0.05) within the same plant community.

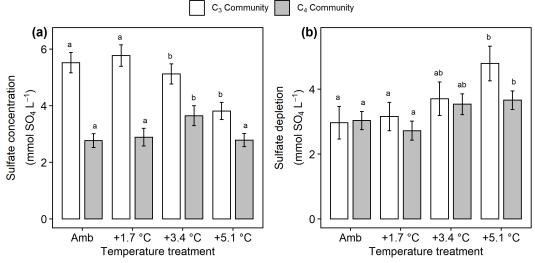


Figure 6. Comparison of sulfate concentrations and estimated sulfate depletion from the C_3 community dominated by *Schoenoplectus* (open bars) and the C_4 community dominated by *Spartina* and *Distichlis* (grey bars). (a) Sulfate in the entire soil profile and (b) sulfate depletion in the rooting zone. Means are averaged across all sampling dates for 2016-2019. Error bars indicate SE. Letters indicate temperature treatments that are significant different from each other (p_{adj} <0.05) within the same plant community.

In the C₃ community, warming of +3.4 and +5.1 °C reduced SO₄ concentrations ($F_{3,597} = 11.7, p <$

229

231

232

233

234

235

236

0.001), but warming effects on SO₄ cycling in the C₄ community were more mixed with +3.4 °C increasing SO₄ ($p_{adj} = 0.013$) but no other treatments having large effects (Fig. 6a). In all plots, the measured concentrations of rooting zone SO₄ were lower than expected based on salinity (Fig. 6b), indicating that SO₄ reduction occurred. In both plant communities, the +5.1 °C treatments increased this SO₄ depletion effect compared to ambient (C₃: F_{3,349} = 3.96, p = 0.008; C₃: F_{3,358} = 3.04, p = 0.029) (Fig. 6b). In both plant communities, dissolved CH₄ was highest when SO₄ concentrations were below 5 mmol SO₄ L⁻¹ (Fig. S5).

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

4. Discussion

Soil temperature (both seasonal and experimental) and plant traits were both strong drivers of CH₄ emissions from this site. This follows prior field, mesocosm, and incubation studies across a variety of wetlands, in which temperature has been shown to be a strong predictor of CH₄ emissions (e.g. Al-Haj and Fulweiler, 2020; van Bodegom and Stams, 1999; Christensen et al., 2003; Dise et al., 1993; Fey and Conrad, 2000; Liu et al., 2019; Ward et al., 2013; Yang et al., 2019; Yvon-Durocher et al., 2014) and in which plant functional type has an interacting effect (Chen et al., 2017; Duval & Radu, 2018; L. Liu et al., 2019; Mueller et al., in press; Ward et al., 2013). Methane emissions are a function of the balance between methanogenesis, CH₄ oxidation, and CH₄ transport, so explaining these results requires some combination of stimulation of methanogenesis, reduction of CH₄ oxidation, or increase in CH₄ transport. Prior data from brackish wetlands are limited, but incubation studies on freshwater wetland soils typically show large increases in CH₄ fluxes with warming (Duval & Radu, 2018; Hopple et al., 2020; Inglett et al., 2012; Sihi et al., 2017; van Bodegom & Stams, 1999; Wilson et al., 2016), indicating that warming alters belowground processes. Though there is some evidence that rhizosphere temperature alters CH₄ transport through rice aerenchyma (Hosono & Nouchi, 1997), any transport-driven effects in this ecosystem would be transient unless there was a simultaneous increase in net CH₄ production (i.e. an increase in methanogenesis that was not completely offset by methanotrophy). Instead, we observed a sustained increase in CH₄ emissions, suggesting large shifts in anaerobic metabolism, especially with +5.1 13

^oC of warming. We propose four potential and non-exclusive mechanisms to explain the temperaturedriven increase in CH₄ emissions: (1) shifted ratios of CH₄ production to oxidation, (2) increased substrate availability, (3) reduced competition with sulfate reducers, and (4) indirect plant trait effects (Fig. 7).

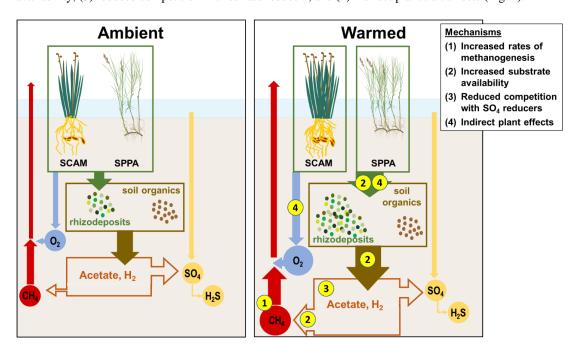


Figure 7. Schematic of mechanisms driving enhanced CH₄ emissions in response to warming. SCAM = Schoenoplectus americanus. SPPA = Spartina patens. Left: Processes under ambient conditions. Plants add organic compounds to the soil, which are transformed into other low molecular weight organic compounds. This pool, and processed soil organic matter, support terminal respiration processes dominated by SO₄ reduction over CH₄ production in organic-rich brackish marsh soils. Plants also transport O₂ which supports oxidation of a fraction of the CH₄ before it can be transported out of the soil. Right: Processes under warmed conditions. 1) Rates of CH₄ production increase more than rates of CH₄ oxidation. 2) Substrate availability increases as plants add more rhizodeposits and organic matter is more rapidly fermented to low molecular weight organic compounds and H₂. 3) The pool of electron donors available to methanogens increases as SO₄ reducers become SO₄ limited. 4) The dominant plant species have different effects on these process with S. americanus driving a net increase in O₂ transport and S. patens driving a net increase in rhizodeposits.

4.1 Whole-ecosystem warming promotes methanogenesis over CH₄ oxidation

Holding the supply of substrates and transport properties of the system constant, warming is expected to increase rates of CH_4 production relative to CH_4 oxidation due solely to differences in the temperature dependence of each process (Megonigal et al., 2016). In wetland soils, the average Q_{10} of methanogenesis is 4.1 compared to 1.9 for aerobic CH_4 oxidation (Segers, 1998), which means that a system starting with

259

260

261

262

263

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

a given initial ratio between the two processes will become increasingly dominated by methanogenesis as soils warm. A corollary to this expected pattern is that the ratio of the two processes should be constant if the Q_{10} responses are similar, an outcome that was supported with in situ measurements of the two processes in a tidal freshwater forested wetland (Megonigal & Schlesinger, 2002). We did not quantify the temperature dependence of CH₄ production and oxidation in the present study, but based on the literature (Segers, 1998) it is likely that methanogenic activity increased more than aerobic methanotrophic activity in direct response to warming (Fig. 7, mechanism 1). Evidence for this is that rhizosphere pools of porewater CH₄ were highest in the warmest treatment (Fig. 5a); because this occurred despite either no change or an increase in aboveground biomass (Noyce et al., 2019) which would by itself have lowered porewater CH₄ due to venting (plant transport), it indicates that CH₄ production increased relative to the sum of aerobic and anaerobic methane oxidation. 4.2 Whole-ecosystem warming increases substrate availability for methanogens Methanogenesis can be the terminal step of anaerobic decomposition, but a consortium of microbes is required to break down soil organic matter to electron donor substrates that methanogens can metabolize. The final step in any decomposition pathway involves the flow of electrons from organic matter (electron donors) to a TEA. Under anaerobic conditions, this is accomplished by microbes that tend to specialize in one TEA and compete for organic C as an electron donor (Megonigal et al., 2004). Consequently, the supply of both electron donors and TEAs regulate the multi-step process of anaerobic decomposition and thus ultimately control CH₄ emissions. Methanogenic activity is typically limited by the supply of electron donors, including low molecular weight organic compounds (e.g. acetate, Neubauer & Craft, 2009) and H₂, a product of organic matter fermentation. We propose that whole-ecosystem warming increases the availability of previously limited C substrates through two pathways (Fig. 7, mechanism 2). First, warming may directly influence C availability through biochemical kinetics. Even if organic inputs remained constant, warming likely accelerates fermentation of soil organic matter, presumably increasing substrate availability for methanogens. Second, the warmed plots had longer growing seasons

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

than the unheated controls (Noyce et al., 2019). This increases inputs of root exudates and fresh detritus, accelerating all forms of heterotrophic microbial respiration by providing organic material that can be broken down into acetate, H₂, and other electron donors (Philippot et al., 2009) and stimulating CH₄ emissions from warmed plots, particularly during the growing season as seen here. In 2017, we measured GPP at the same time as CH₄ emissions and observed that CH₄ emissions were positively correlated with GPP and that this effect increased with warming (Fig. S6). Prior studies have also linked CH₄ production or emissions to rates of photosynthesis (Vann & Megonigal, 2003), periods of active growth (Chen et al., 2017; Ward et al., 2013), and plant senescence which coincides with a pulse of labile C from plants to soils (Bardgett et al., 2005). 4.4 Whole-ecosystem warming reduces competition with sulfate reducers While acetate and other low molecular weight organic compounds are important electron donors for methanogenic respiration, they are also a key substrate for other microbial groups including SO₄ reducers (Megonigal et al., 2004; Ye et al., 2014). As a result, consumption of the limited acetate supply by SO₄ reducers should (and often does) limit methanogenic activity, such that terminal microbial respiration is typically dominated by SO₄ reduction in brackish marshes (Sutton-Grier et al., 2011). We did not measure rates of SO₄ reduction in this study, but can use SO₄ depletion as a proxy; more SO₄ depletion indicates that more SO₄ reduction has occurred. Warming generally increased SO₄ depletion, especially in the plots dominated by Schoenoplectus (Fig. 6b). Differences in SO₄ depletion between plots is not driven by SO₄ inputs because the only supply of SO₄ is the tidal flow, which is the same for all plots in each community of the experiment. Instead, higher rates of SO₄ reduction are most likely driven by some combination of electron donor supply and kinetics. While SO₄ reducers likely benefited from the increased availability of electron donors, as described above, the kinetics of SO₄ reduction also respond strongly to temperature (Weston & Joye, 2005). When SO₄ concentrations drop below a threshold concentration, SO₄ reduction becomes SO₄-limited, rather than electron donor-limited (Megonigal et al., 2004). A review of the coastal wetland CH₄ literature

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

estimated this threshold at 4 mmol SO₄ (Poffenbarger et al., 2011), a value that is consistent with patterns of porewater [CH₄] and [SO₄] at the GCReW site (Keller et al. 2009). As SO₄ and O₂ are the dominant electron-accepting compounds that suppress methanogenesis in this organic soil, this drawdown then releases the methanogens from substrate competition (Fig. 7, mechanism 3). Here, we show that [SO₄] is typically below 4 mmol in the +5.1 plots in the C₃ community and in all plots in the C₄ community (Fig. 6, Fig. S5). The drawdown of SO₄ may also reduce rates of anaerobic CH₄ oxidation (Hinrichs & Boetius, 2003). Van Hulzen et al. (1999) proposed a multi-phase system in a warming incubation experiment, observing that first methanogens are out-competed for substrates by other microbes, next CH₄ production increases as the supply of inhibiting TEA decreases, and finally [TEA] decreases to the point that methanogenesis is controlled only by the supply of electron donors. Warming in this study decreased time required for the system to pass through the first two phases (van Hulzen et al., 1999). In our study, this final phase of increased methanogenic activity occurs when SO₄ concentrations dip below 4 mmol SO₄ L 1 , which occurs most often in the +5.1 $^{\circ}$ C plots, especially in the C_{3} community. This interpretation is also supported by the long-term record of porewater chemistry from an allied experiment at the site, demonstrating that porewater CH₄ concentrations increase as SO₄ concentrations decrease (Keller et al., 2009). Methanogens may also have a competitive advantage over SO₄ reducers for electron donor consumption at warmer temperatures (van Hulzen et al., 1999). Sulfate reducers and methanogens have very similar K_M values for acetate, but the K_M for acetoclastic methanogenesis may decrease with temperature whereas K_M values for SO₄ reducers increase with temperature (van Bodegom & Stams, 1999). If this is the case in our system then warming would allow methanogens to use a greater proportion of the available acetate and other organic compounds. 4.5 Plant traits modify warming effects on CH₄ cycling The three biogeochemical mechanisms we propose to explain a warming-induced increase in CH₄ emissions should interact strongly with plant responses to warming. Relationships between plant

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

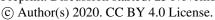
357

358

359

360

361


362

363

ecosystems such as peatlands (Bubier et al., 1995; Ward et al., 2013) (Bubier et al., 1995, Ward et al., 2013) and in tidal wetland mesocosms (L. Liu et al., 2019; Martin & Moseman-Valtierra, 2017; Mueller et al., in press). We provide field evidence that two species with distinct plant traits -- Schoenoplectus and Spartina -- have strikingly different effects on CH₄ emissions from brackish wetlands. Spartinadominated communities had consistently higher CH₄ emissions under both ambient and warmed conditions (Fig. 3). In most years, Schoenoplectus biomass was negatively correlated with CH₄ emissions, while Spartina/Distichlis biomass was positively correlated. Vegetation effects are typically strongest during the growing season, when the plants are actively altering rhizosphere biogeochemistry (F.-J. W. A. van der Nat & Middelburg, 1998; Ward et al., 2013), which is consistent with our observations in this study. As with warming effects, plant-driven shifts in CH₄ emissions are the result of differing rates of CH₄ production, oxidation, transport, or a combination of these processes, but sustained differences in emissions cannot be attributed only to transport, as discussed previously. Instead, the stimulation of CH₄ emissions is likely due to changes in the plant-mediated supply of electron acceptors and electron donors. In a field environment, differentiating between species-specific effects and underlying environmental conditions can be difficult, but mesocosm studies that control all environmental factors have also found species-specific effects on CH₄ cycling (e.g. (D. Liu et al., 2014). Plants can alter CH₄ cycling by adding O2 (electron acceptor) or C substrates (electron donors) to the rhizosphere, altering the redox state. We propose that Schoenoplectus is a net oxidizer of the rhizosphere and that Spartina is a net reducer, and thus their presence and productivity have opposing effects on CH₄ emissions (Fig. 7, mechanism 4). 4.5.1 Schoenoplectus oxidizes the rhizosphere, increasing CH₄ oxidation Species vary in their capacity to support aerobic CH₄ oxidation (van der Nat & Middelburg, 1998) and Schoenoplectus appears to support higher rates of aerobic CH₄ oxidation than Spartina (Mueller et al., in press). Scirpus lacustris is morphologically similar to Schoenoplectus americanus studied here and

functional groups and CH₄ emissions have been demonstrated through field studies in other wetland

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

has been demonstrated to have substantial rhizospheric oxidation capacity, especially during the growing season (van der Nat & Middelburg, 1998). Consequently, these plants likely exert stronger control on rates of CH₄ oxidation than rates of methanogenesis (van der Nat & Middelburg, 1998). We hypothesize that the relatively high capacity of Schoenoplectus to transport O₂ held the CH₄ emissions stimulation caused by modest levels of warming (+1.7 to +3.4 °C) to rates similar to under ambient conditions (Fig. 3). At high warming (+5.1 °C), however, Schoenoplectus community CH₄ emissions drastically increase (Fig. 3). We suggest that this is due to the combined effects of the three mechanisms discussed previously, namely the differences in the Q₁₀-values of CH₄ production and CH₄ oxidation, the increased supply of organic substrate through plant productivity, and the decrease in competition for electron donors due to SO₄ depletion. Collectively, when the ecosystem is warmed above current ambient conditions by 5 °C or more, enhanced stimulation of CH₄ production starts to offset some of the Schoenoplectus oxidation effect. This also offers an explanation for the positive correlation between Schoenoplectus biomass and CH₄ emissions observed in 2016 as that was the hottest of the four years in this study. 4.5.2 Spartina reduces the rhizosphere, increasing CH₄ production The variability in quality and quantity of root exudates between plant functional types is well known to affect microbial community composition and activity (Deyn et al., 2008). Methanogenesis responses to warming in incubation studies are related to the lignin and cellulose content of the peat, which in turn depends on the plant functional type from which the peat developed (Duval & Radu, 2018). Although warming is likely increasing substrate availability across the whole experiment, the production rate of labile, low molecular weight C substrates through fermentation does not increase as rapidly above 25 °C (Scott C Neubauer & Craft, 2009; Weston & Joye, 2005). Microbes may also preferentially use root exudates as their C sources (Delarue et al., 2014) and consequently warming effects on CH₄ production should be strongest in a system where the plants are directly releasing key C substrates. We propose this explains the patterns that we observed in the C₄ community. Multiple years of porewater chemistry at this

389 site show that Spartina-dominated communities have higher DOC and dissolved CH4 than adjacent 390 Schoenoplectus communities (Keller et al., 2009; Marsh et al., 2005). Though we did not directly measure 391 root exudation, porewater DOC is partially derived from root exudation and has been used as a proxy to 392 understand the responses of root exudates to global change factors (Dieleman et al., 2016; Fenner et al., 393 2007; Jones et al., 2009). 394 In most years, Spartina biomass was positively correlated with CH₄ emissions, supporting our 395 hypothesis that Spartina favors net CH₄ production. However, in 2016 Spartina biomass and CH₄ 396 emissions were negatively correlated. Prior work at this site has indicated that Spartina/Distichlis biomass 397 is more negatively affected by hot and dry growing conditions than Schoenoplectus (Noyce et al., 2019) 398 due in part because the Spartina/Distichlis (C4) communities are less frequently inundated. The 2016 399 growing season was substantially warmer than average (Table 2) and the heating treatments were 400 initialized on 1 Jun of that year, after the annual plants had already established and may have developed 401 adaptations to ambient, rather than elevated, temperature conditions. The combination of these two effects 402 likely led to heat stress, reducing the root exudates supplied to the rhizosphere microbial community 403 (Heckathorn et al., 2013) and thus minimizing the Spartina stimulation effect. 404 4.6 Comparisons with prior data 405 Methane emissions have been measured at the GCReW site previously, but this study represents the most 406 comprehensive dataset collected to date, and is thus particularly useful for advancing the process-based 407 understanding needed to improve prognostic models. Overall, our flux estimates are lower than those 408 reported previously. The earliest CH₄ fluxes were measured in a single month (July) in Schoenoplectus-409 dominated plots and reported to be 331 to 6883 µmol m⁻² d⁻¹ (Dacey et al., 1994), much higher than our range of 359 to 1651 µmol m⁻² d⁻¹ for ambient temperature Schoenoplectus plots in July. Similarly, Marsh 410 411 et al. (2005) reported mean growing season (May-Oct) CH_4 emissions from this site of 846 ± 111 µmol $CH_4 \text{ m}^{-2} \text{ d}^{-1}$, whereas we measured $656 \pm 79 \mu\text{mol } CH_4 \text{ m}^{-2} \text{ d}^{-1}$ over the same months. Finally, Pastore et 412 al. (2017) estimated average annual fluxes in their Schoenoplectus-dominated ambient CO₂ plots as $3.1 \pm$ 413 1.7 g CH₄ m⁻² yr⁻¹, compared to our estimates of 1.6 ± 0.3 g CH₄ m⁻² yr⁻¹ for Schoenoplectus plots. The 414

different estimates by these studies may be partly due to interannual variability as demonstrated in our data where 2018 had substantially higher fluxes than any of the surrounding years (Table S2).

The annual estimates reported here for ambient temperature plots trended lower than published

mean CH₄ emissions for mesohaline tidal marshes. Our plots ranged from 0.7 to 9.3 g CH₄ m⁻² yr⁻¹ (mean = 9.3), compared to the range of 3.3 to 16.4 g CH₄ m⁻² yr⁻¹ (mean = 16.4) reported by Poffenbarger et al. (2011). This difference may be explained by the fact that there was significant within-class variation in the oligohaline and mesohaline salinity classes that was unexplained and their assessment was based on too few data points to fully capture the variation that is expected to exist in the mesohaline class. Indeed, subsequent studies have documented fluxes well below 3 g CH₄ m⁻² yr⁻¹ (Krauss & Whitbeck, 2012), and even negative fluxes (Al-Haj & Fulweiler, 2020). We hypothesize that the low fluxes measured at our site reflect *Schoenoplectus americanus* traits that favor CH₄ oxidation more than CH₄ production, and that the high end of our range was limited by the high soil elevation (i.e. deep water table) of areas dominated by *Spartina patens*, off-setting the influence of *S. patens* traits that favor CH₄ production.

428 4.7 Implications for tidal wetland carbon cycling

Warming accelerates rates of CH₄ emissions from brackish marshes, especially during the growing season. This is driven by both direct and indirect warming effects and mediated by soil biogeochemistry, but the magnitude of the warming effect is also dependent on traits of the plant species that dominate the plant community. Communities dominated by *Spartina patens* increase net CH₄ emissions in response to smaller increments of warming than communities dominated by *Schoenoplectus americanus*. *Spartina*-dominated sites may thus have a higher likelihood of shifting from a net C sink to a net C source under future warming conditions, due to this increased loss of C as CH₄. However, this effect could be mitigated if these high-elevation *Spartina* marshes become dominated by *Schoenoplectus* in response to predicted accelerated sea-level rise (Kirwan & Guntenspergen, 2012). In addition, *Spartina* traits are plastic and influenced by factors such as soil redox conditions (Kludze & DeLaune, 1994), salinity (Crozier & DeLaune, 1996), and water level (Liu et al., 2019), all of which can be expected to change plant-mediated effects on CH₄ biogeochemistry. Further studies are needed to thoroughly assess the range of

441 environmental conditions under which Spartina is a net reducer and Schoenoplectus is a net oxidizer as 442 proposed by the present study. 443 444 Data availability 445 All data is available from the corresponding author upon request. 446 447 **Author contributions** 448 GLN and JPM designed the study, GLN collected and analyzed the data, and GLN and JPM wrote the 449 paper. 450 451 **Competing interests** 452 The authors declare that they have no conflict of interest. 453 454 Acknowledgements 455 This manuscript is based upon work supported by the U.S. Department of Energy, Office of Science, 456 Office of Biological and Environmental Research Program (DE-SC0014413 and DE-SC0019110), the 457 National Science Foundation Long-Term Research in Environmental Biology Program (DEB-0950080, 458 DEB-1457100, and DEB-1557009), and the Smithsonian Institution. Roy Rich designed the warming 459 infrastructure and maintains it with the assistance of Gary Peresta. We also thank technicians in the SERC 460 Biogeochemistry Lab for assistance with porewater collection and analysis. 461 462 References Al-Haj, A. N., & Fulweiler, R. W. (2020). A synthesis of methane emissions from shallow vegetated 463 464 coastal ecosystems. Global Change Biology, 26(5), 2988-3005. 465 https://doi.org/10.1111/gcb.15046 Bardgett, R. D., Bowman, W. D., Kaufmann, R., & Schmidt, S. K. (2005). A temporal approach to 466 467 linking aboveground and belowground ecology. Trends in Ecology & Evolution, 20(11), 634– 468 641. https://doi.org/10.1016/j.tree.2005.08.005

469	Basiliko, N., Stewart, H., Roulet, N. T., & Moore, T. R. (2012). Do Root Exudates Enhance Peat
470	Decomposition? Geomicrobiology Journal, 29(4), 374–378.
471	https://doi.org/10.1080/01490451.2011.568272
472	Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., & Zhuang, Q. (2013). Methane emissions from
473	wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales.
474	Global Change Biology, 19(5), 1325–1346. https://doi.org/10.1111/gcb.12131
475	Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The carbon balance of
476	North American wetlands. Wetlands, 26(4), 889–916. https://doi.org/10.1672/0277-
477	5212(2006)26[889:TCBONA]2.0.CO;2
478	Bubier, J. L., Moore, T. R., Bellisario, L., Comer, N. T., & Crill, P. M. (1995). Ecological controls on
479	methane emissions from a Northern Peatland Complex in the zone of discontinuous permafrost,
480	Manitoba, Canada. Global Biogeochemical Cycles, 9(4), 455–470.
481	https://doi.org/10.1029/95GB02379
482	Chen, J., Luo, Y., Xia, J., Wilcox, K. R., Cao, J., Zhou, X., Jiang, L., Niu, S., Estera, K. Y., Huang, R.,
483	Wu, F., Hu, T., Liang, J., Shi, Z., Guo, J., & Wang, RW. (2017). Warming Effects on
484	Ecosystem Carbon Fluxes Are Modulated by Plant Functional Types. Ecosystems, 20(3), 515-
485	526. https://doi.org/10.1007/s10021-016-0035-6
486	Christensen, T. R., Ekberg, A., Ström, L., Mastepanov, M., Panikov, N., Öquist, M., Svensson, B. H.,
487	Nykänen, H., Martikainen, P. J., & Oskarsson, H. (2003). Factors controlling large scale
488	variations in methane emissions from wetlands. Geophysical Research Letters, 30(7), 1414.
489	https://doi.org/10.1029/2002GL016848
490	Crozier, C. R., & DeLaune, R. D. (1996). Methane production by soils from different Louisiana marsh
491	vegetation types. Wetlands, 16(2), 121–126. https://doi.org/10.1007/BF03160685
492	Dacey, J. W. H., Drake, B. G., & Klug, M. J. (1994). Stimulation of methane emission by carbon dioxide
493	enrichment of marsh vegetation. <i>Nature</i> , 370(6484), 47–49. https://doi.org/10.1038/370047a0
494	Delarue, F., Gogo, S., Buttler, A., Bragazza, L., Jassey, V. E. J., Bernard, G., & Laggoun-Défarge, F. 23

495	(2014). Indirect effects of experimental warming on dissolved organic carbon content in
496	subsurface peat. Journal of Soils and Sediments, 14(11), 1800–1805.
497	https://doi.org/10.1007/s11368-014-0945-x
498	Deyn, G. B. D., Cornelissen, J. H. C., & Bardgett, R. D. (2008). Plant functional traits and soil carbon
499	sequestration in contrasting biomes. <i>Ecology Letters</i> , 11(5), 516–531.
500	https://doi.org/10.1111/j.1461-0248.2008.01164.x
501	Dieleman, C. M., Lindo, Z., McLaughlin, J. W., Craig, A. E., & Branfireun, B. A. (2016). Climate change
502	effects on peatland decomposition and porewater dissolved organic carbon biogeochemistry.
503	Biogeochemistry, 128(3), 385–396. https://doi.org/10.1007/s10533-016-0214-8
504	Ding, W., Cai, Z., & Tsuruta, H. (2005). Plant species effects on methane emissions from freshwater
505	marshes. Atmospheric Environment, 39(18), 3199–3207.
506	https://doi.org/10.1016/j.atmosenv.2005.02.022
507	Dise, N. B., Gorham, E., & Verry, E. S. (1993). Environmental factors controlling methane emissions
508	from peatlands in northern Minnesota. Journal of Geophysical Research: Atmospheres, 98(D6),
509	10583–10594. https://doi.org/10.1029/93JD00160
510	Duval, T. P., & Radu, D. D. (2018). Effect of temperature and soil organic matter quality on greenhouse-
511	gas production from temperate poor and rich fen soils. <i>Ecological Engineering</i> , 114, 66–75.
512	https://doi.org/10.1016/j.ecoleng.2017.05.011
513	Environmental Protection Agency. (2017). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-
514	2015. (EPA 430-P-17-001).
515	Fenner, N., Freeman, C., Lock, M. A., Harmens, H., Reynolds, B., & Sparks, T. (2007). Interactions
516	between Elevated CO2 and Warming Could Amplify DOC Exports from Peatland Catchments.
517	Environmental Science & Technology, 41(9), 3146–3152. https://doi.org/10.1021/es061765v
518	Fey, A., & Conrad, R. (2000). Effect of temperature on carbon and electron flow and on the archaeal
519	community in methanogenic rice field soil. Applied and Environmental Microbiology, 66(11),
520	4790–4797. https://doi.org/10.1128/AEM.66.11.4790-4797.2000 24

521	Heckathorn, S. A., Giri, A., Mishra, S., & Bista, D. (2013). Heat Stress and Roots. In Climate Change
522	and Plant Abiotic Stress Tolerance (pp. 109-136). John Wiley & Sons, Ltd.
523	https://doi.org/10.1002/9783527675265.ch05
524	Hinrichs, KU., & Boetius, A. (2003). The Anaerobic Oxidation of Methane: New Insights in Microbial
525	Ecology and Biogeochemistry. In G. Wefer, D. Billett, D. Hebbeln, B. B. Jørgensen, M. Schlüter,
526	& T. C. E. van Weering (Eds.), Ocean Margin Systems (pp. 457–477). Springer.
527	https://doi.org/10.1007/978-3-662-05127-6_28
528	Hopple, A. M., Wilson, R. M., Kolton, M., Zalman, C. A., Chanton, J. P., Kostka, J., Hanson, P. J.,
529	Keller, J. K., & Bridgham, S. D. (2020). Massive peatland carbon banks vulnerable to rising
530	temperatures. Nature Communications, 11(1), 2373. https://doi.org/10.1038/s41467-020-16311-8
531	Hosono, T., & Nouchi, I. (1997). The dependence of methane transport in rice plants on the root zone
532	temperature. Plant and Soil, 191(2), 233-240. https://doi.org/10.1023/A:1004203208686
533	Inglett, K. S., Inglett, P. W., Reddy, K. R., & Osborne, T. Z. (2012). Temperature sensitivity of
534	greenhouse gas production in wetland soils of different vegetation. Biogeochemistry, 108(1-3),
535	77–90. https://doi.org/10.1007/s10533-011-9573-3
536	IPCC. (2013). Limate Change 2013: The Physical Science Basis. Working Group I Contribution to the
537	Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
538	www.ipcc.ch/report/ar5/wg1/
539	Jones, T. G., Freeman, C., Lloyd, A., & Mills, G. (2009). Impacts of elevated atmospheric ozone on
540	peatland below-ground DOC characteristics. <i>Ecological Engineering</i> , 35(6), 971–977.
541	https://doi.org/10.1016/j.ecoleng.2008.08.009
542	Kayranli, B., Scholz, M., Mustafa, A., & Hedmark, Å. (2010). Carbon Storage and Fluxes within
543	Freshwater Wetlands: A Critical Review. Wetlands, 30(1), 111–124.
544	https://doi.org/10.1007/s13157-009-0003-4
545	Keller, J. K., Wolf, A. A., Weisenhorn, P. B., Drake, B. G., & Megonigal, J. P. (2009). Elevated CO ₂
546	affects porewater chemistry in a brackish marsh. <i>Biogeochemistry</i> , 96(1–3), 101–117.

547	https://doi.org/10.1007/s10533-009-9347-3
548	Kirwan, M. L., & Guntenspergen, G. R. (2012). Feedbacks between inundation, root production, and
549	shoot growth in a rapidly submerging brackish marsh. Journal of Ecology, 100(3), 764–770.
550	https://doi.org/10.1111/j.1365-2745.2012.01957.x
551	Kludze, H. K., & DeLaune, R. D. (1994). Methane Emissions and Growth of Spartina patens in Response
552	to Soil Redox Intensity. Soil Science Society of America Journal, 58(6), 1838–1845.
553	https://doi.org/10.2136/sssaj1994.03615995005800060037x
554	Krauss, K. W., & Whitbeck, J. L. (2012). Soil greenhouse gas fluxes during wetland forest retreat along
555	the Lower Savannah River, Georgia (USA). In Wetlands (Vol. 32, Issue 1, p. 7381).
556	https://doi.org/10.1007/s13157-011-0246-8
557	Lenzewski, N., Mueller, P., Meier, R. J., Liebsch, G., Jensen, K., & Koop-Jakobsen, K. (2018). Dynamics
558	of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna – a planar optode study of
559	belowground gas exchange between plants and sediment. New Phytologist, n/a-n/a.
560	https://doi.org/10.1111/nph.14973
561	Liu, D., Ding, W., Yuan, J., Xiang, J., & Lin, Y. (2014). Substrate and/or substrate-driven changes in the
562	abundance of methanogenic archaea cause seasonal variation of methane production potential in
563	species-specific freshwater wetlands. Applied Microbiology and Biotechnology, 98(10), 4711-
564	4721. https://doi.org/10.1007/s00253-014-5571-4
565	Liu, L., Wang, D., Chen, S., Yu, Z., Xu, Y., Li, Y., Ge, Z., & Chen, Z. (2019). Methane Emissions from
566	Estuarine Coastal Wetlands: Implications for Global Change Effect. Soil Science Society of
567	America Journal, 83(5), 1368–1377. https://doi.org/10.2136/sssaj2018.12.0472
568	Lu, M., Caplan, J. S., Bakker, J. D., Langley, J. A., Mozdzer, T. J., Drake, B. G., & Megonigal, J. P.
569	(2016). Allometry data and equations for coastal marsh plants. <i>Ecology</i> , 97(12), 3554–3554.
570	https://doi.org/10.1002/ecy.1600
571	Marsh, A. S., Rasse, D. P., Drake, B. G., & Patrick Megonigal, J. (2005). Effect of elevated CO2 on
572	carbon pools and fluxes in a brackish marsh. <i>Estuaries</i> , 28(5), 694–704.

573	https://doi.org/10.1007/BF02732908
574	Martin, R. M., & Moseman-Valtierra, S. (2017). Different short-term responses of greenhouse gas fluxes
575	from salt marsh mesocosms to simulated global change drivers. <i>Hydrobiologia</i> , 802(1), 71–83.
576	https://doi.org/10.1007/s10750-017-3240-1
577	Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E.,
578	Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved
579	understanding of the role of vegetated coastal habitats in sequestering CO ₂ . Frontiers in Ecology
580	and the Environment, 9(10), 552-560. https://doi.org/10.1890/110004
581	Megonigal, J. P., Whalen, S. C., Tissue, D. T., Bovard, B. D., Allen, A. S., & Albert, D. B. (1999). A
582	Plant-Soil-Atmosphere Microcosm for Tracing Radiocarbon from Photosynthesis through
583	Methanogenesis. Soil Science Society of America Journal, 63(3), 665–671.
584	https://doi.org/10.2136/sssaj1999.03615995006300030033x
585	Megonigal, J. Patrick, Chapman, S., Crooks, S., Dijkstra, P., Kirwan, M., & Langley, A. (2016). 3.4
586	Impacts and effects of ocean warming on tidal marsh and todal freshwater forest ecosystems. In
587	D. Laffoley & J. M. Baxter (Eds.), Explaining Ocean Warming: Causes, scale, effects, and
588	consequences. IUCN.
589	Megonigal, J. Patrick, Hines, M. E., & Visscher, P. T. (2004). Anaerobic metabolism: Linkages to trace
590	gases and aerobic processes. In W. H. Schlesinger (Ed.), Biogeochemistry (pp. 317-424).
591	Elsevier-Pergamon.
592	Megonigal, J. Patrick, & Schlesinger, William. H. (2002). Methane-limited methanotrophy in tidal
593	freshwater swamps. Global Biogeochemical Cycles, 16(4), 1088.
594	https://doi.org/10.1029/2001GB001594
595	Moor, H., Rydin, H., Hylander, K., Nilsson, M. B., Lindborg, R., & Norberg, J. (2017). Towards a trait-
596	based ecology of wetland vegetation. Journal of Ecology, 105(6), 1623-1635.
597	https://doi.org/10.1111/1365-2745.12734
598	Mueller, P., Jensen, K., & Megonigal, J. P. (2016). Plants mediate soil organic matter decomposition in 27

599	response to sea level rise. Global Change Biology, 22(1), 404-414.
600	https://doi.org/10.1111/gcb.13082
601	Mueller, P., Mozdzer, T. J., Langley, J. A., Aoki, L. R., Noyce, G. L., & Megonigal, J. P. (in press).
602	Plants determine methane response to sea level rise. <i>Nature Communications</i> .
603	https://doi.org/10.1038/s41467-020-18763-4
604	Neubauer, S. C., Emerson, D., & Megonigal, J. P. (2008). Microbial oxidation and reduction of Iron in
605	the root zone and influences on metal mobility. In Biophysico-Chemical Processes of Heavy
606	Metals and Metalloids in Soil Environments (pp. 339–371). John Wiley & Sons, Ltd.
607	https://doi.org/10.1002/9780470175484.ch9
608	Neubauer, Scott C, & Craft, C. B. (2009). Chapter 23 Global Change and Tidal Freshwater Wetlands:
609	Scenarios and Impacts. In A. Barendregt, D. Whigham, & A. Baldwin (Eds.), Tidal Freshwater
610	Wetlands (pp. 253–310). Margraf Publishers.
611	Neubauer, Scott C., & Megonigal, J. P. (2015). Moving beyond global warming potentials to quantify the
612	climatic role of ecosystems. <i>Ecosystems</i> , 18(6), 1000–1013. https://doi.org/10.1007/s10021-015-
613	9879-4
614	Noyce, G. L., Kirwan, M. L., Rich, R. L., & Megonigal, J. P. (2019). Asynchronous nitrogen supply and
615	demand produce non-linear plant allocation responses to warming and elevated CO ₂ . Proceedings
616	of the National Academy of Sciences.
617	Pastore, M. A., Megonigal, J. P., & Langley, J. A. (2017). Elevated CO ₂ and nitrogen addition accelerate
618	net carbon gain in a brackish marsh. Biogeochemistry, 133(1), 73-87.
619	https://doi.org/10.1007/s10533-017-0312-2
620	Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., Fourqurean,
621	J. W., Kauffman, J. B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., & Baldera,
622	A. (2012). Estimating global "blue carbon" emissions from conversion and degradation of
623	vegetated coastal ecosystems. PLOS ONE, 7(9), e43542.
624	https://doi.org/10.1371/journal.pone.0043542 28

625	Philippot, L., Hallin, S., Börjesson, G., & Baggs, E. M. (2009). Biochemical cycling in the rhizosphere
626	having an impact on global change. Plant and Soil, 321(1), 61-81.
627	https://doi.org/10.1007/s11104-008-9796-9
628	Poffenbarger, H. J., Needelman, B. A., & Megonigal, J. P. (2011). Salinity influence on methane
629	emissions from tidal marshes. Wetlands, 31(5), 831–842. https://doi.org/10.1007/s13157-011-
630	0197-0
631	Rich, R. L., Stefanski, A., Montgomery, R. A., Hobbie, S. E., Kimball, B. A., & Reich, P. B. (2015).
632	Design and performance of combined infrared canopy and belowground warming in the
633	B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Global Change
634	Biology, 21(6), 2334–2348. https://doi.org/10.1111/gcb.12855
635	Robroek, B. J. M., Albrecht, R. J. H., Hamard, S., Pulgarin, A., Bragazza, L., Buttler, A., & Jassey, V. E.
636	(2016). Peatland vascular plant functional types affect dissolved organic matter chemistry. Plant
637	and Soil, 407(1), 135–143. https://doi.org/10.1007/s11104-015-2710-3
638	Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope,
639	G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson,
640	R. B., Alexe, M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., Peng, S. (2016).
641	The global methane budget 2000-2012. Earth System Science Data, 8(2), 697–751.
642	http://dx.doi.org/10.5194/essd-8-697-2016
643	Segers, R. (1998). Methane production and methane consumption: A review of processes underlying
644	wetland methane fluxes. Biogeochemistry, 41(1), 23–51.
645	https://doi.org/10.1023/A:1005929032764
646	Sihi, D., Inglett, P. W., Gerber, S., & Inglett, K. S. (2017). Rate of warming affects temperature
647	sensitivity of anaerobic peat decomposition and greenhouse gas production. Global Change
648	Biology, 24(1), e259-e274. https://doi.org/10.1111/gcb.13839
649	Sorrell, B. K., Brix, H., Schierup, HH., & Lorenzen, B. (1997). Die-back of Phragmites australis:
650	Influence on the distribution and rate of sediment methanogenesis. <i>Biogeochemistry</i> , 36(2), 173–29

651	188. https://doi.org/10.1023/A:1005761609386
652	Stanley, E. H., & Ward, A. K. (2010). Effects of Vascular Plants on Seasonal Pore Water Carbon
653	Dynamics in a Lotic Wetland. Wetlands, 30(5), 889–900. https://doi.org/10.1007/s13157-010-
654	0087-x
655	Sutton-Grier, Ariana. E., Keller, J. K., Koch, R., Gilmour, C., & Megonigal, J. P. (2011). Electron donors
656	and acceptors influence anaerobic soil organic matter mineralization in tidal marshes. Soil
657	Biology and Biochemistry, 43(7), 1576–1583. https://doi.org/10.1016/j.soilbio.2011.04.008
658	van Bodegom, P. M., & Stams, A. J. M. (1999). Effects of alternative electron acceptors and temperature
659	on methanogenesis in rice paddy soils. Chemosphere, 39(2), 167–182.
660	https://doi.org/10.1016/S0045-6535(99)00101-0
661	van der Nat, FJ., & Middelburg, J. J. (1998). Effects of two common macrophytes on methane dynamics
662	in freshwater sediments. Biogeochemistry, 43(1), 79–104.
663	https://doi.org/10.1023/A:1006076527187
664	van der Nat, FJ. W. A., & Middelburg, J. J. (1998). Seasonal variation in methane oxidation by the
665	rhizosphere of Phragmites australis and Scirpus lacustris. Aquatic Botany, 61(2), 95-110.
666	https://doi.org/10.1016/S0304-3770(98)00072-2
667	van Hulzen, J. B., Segers, R., van Bodegom, P. M., & Leffelaar, P. A. (1999). Temperature effects on soil
668	methane production: An explanation for observed variability. Soil Biology and Biochemistry,
669	31(14), 1919–1929. https://doi.org/10.1016/S0038-0717(99)00109-1
670	Vann, C. D., & Megonigal, J. P. (2003). Elevated CO ₂ and water depth regulation of methane emissions:
671	Comparison of woody and non-woody wetland plant species. Biogeochemistry, 63(2), 117–134.
672	https://doi.org/10.1023/A:1023397032331
673	Waldo, N. B., Hunt, B. K., Fadely, E. C., Moran, J. J., & Neumann, R. B. (2019). Plant root exudates
674	increase methane emissions through direct and indirect pathways. Biogeochemistry, 145(1), 213-
675	234. https://doi.org/10.1007/s10533-019-00600-6
676	Ward, S. E., Ostle, N. J., Oakley, S., Quirk, H., Henrys, P. A., & Bardgett, R. D. (2013). Warming effects 30

677	on greenhouse gas fluxes in peatlands are modulated by vegetation composition. Ecology Letters,
678	16(10), 1285–1293. https://doi.org/10.1111/ele.12167
679	Wassmann, R., Alberto, M. C., Tirol-Padre, A., Hoang, N. T., Romasanta, R., Centeno, C. A., & Sander,
680	B. O. (2018). Increasing sensitivity of methane emission measurements in rice through
681	deployment of 'closed chambers' at nighttime. PLOS ONE, 13(2), e0191352.
682	https://doi.org/10.1371/journal.pone.0191352
683	Weston, N. B., & Joye, S. B. (2005). Temperature-driven decoupling of key phases of organic matter
684	degradation in marine sediments. Proceedings of the National Academy of Sciences of the United
685	States of America, 102(47), 17036–17040. https://doi.org/10.1073/pnas.0508798102
686	Wilson, R. M., Hopple, A. M., Tfaily, M. M., Sebestyen, S. D., Schadt, C. W., Pfeifer-Meister, L.,
687	Medvedeff, C., McFarlane, K. J., Kostka, J. E., Kolton, M., Kolka, R. K., Kluber, L. A., Keller, J.
688	K., Guilderson, T. P., Griffiths, N. A., Chanton, J. P., Bridgham, S. D., & Hanson, P. J. (2016).
689	Stability of peatland carbon to rising temperatures. <i>Nature Communications</i> , 7, ncomms13723.
690	https://doi.org/10.1038/ncomms13723
691	Yang, P., Wang, M. H., Lai, D. Y. F., Chun, K. P., Huang, J. F., Wan, S. A., Bastviken, D., & Tong, C.
692	(2019). Methane dynamics in an estuarine brackish Cyperus malaccensis marsh: Production and
693	porewater concentration in soils, and net emissions to the atmosphere over five years. Geoderma,
694	337, 132–142. https://doi.org/10.1016/j.geoderma.2018.09.019
695	Ye, R., Jin, Q., Bohannan, B., Keller, J. K., & Bridgham, S. D. (2014). Homoacetogenesis: A potentially
696	underappreciated carbon pathway in peatlands. Soil Biology and Biochemistry, 68(Supplement
697	C), 385–391. https://doi.org/10.1016/j.soilbio.2013.10.020
698	Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C., St-Pierre, A., Thanh-Duc, N., &
699	del Giorgio, P. A. (2014). Methane fluxes show consistent temperature dependence across
700	microbial to ecosystem scales. <i>Nature</i> , 507(7493), 488–491. https://doi.org/10.1038/nature13164
701	